SOME COEFFICIENT ESTIMATES FOR \mathcal{H}^p FUNCTIONS

CATHERINE BENETEAU AND BORIS KORENBLUM

Abstract. We <code>-nd</code> the maximum modulus of the *n*-th Taylor coe±cient c_n of a function in the unit ball of H^p , $1 \cdot p \cdot 1$; provided that c_0 is <code>-xed</code>, and identify the corresponding extremal functions.

1. Introduction

and c such that 0 < c < 1: In the following sections, we consider only such values of p and c. In proving the main result, we prove some intermediate theorems which are of independent interest.

3. Statement of the Main Results

Theorem 3.1. If $2^{i\frac{1}{p}} \cdot c \cdot 1$; then

$$M_p(n;c) = \frac{2}{p}c^{1/\frac{p}{2}}P_{1/\sqrt{p}}$$

and the corresponding extremal function is

$$f(z) = (c^{\frac{p}{2}} + \rho_{1 i c^{p}} z^{n})^{\frac{2}{p}}$$

Theorem 3.2. If $0 < c < 2^{j \frac{1}{p}}$; then the zero-free function f such that $kfk_p \cdot 1$ and jf(0)j = c that maximizes $jf^{\emptyset}(0)j$ is

$$f(z) = 2^{j \frac{1}{p}} (1 + z)^{\frac{2}{p}} (2^{\frac{1}{p}} c)^{\frac{1-z}{1+z}}$$

and

$$f^{\emptyset}(0) = c(\frac{2}{p} + \log \frac{1}{2^{\frac{2}{p}}c^2})$$
:

Theorem 3.3. If $0 < c < 2^{i \frac{1}{p}}$; then

$$M_p(n;c) = (\frac{2}{p}i \ 1)cv + \frac{c}{v}$$

and the corresponding extremal function is

$$f(z) = \frac{c}{V} (1 + VZ^{n})^{\frac{2}{p}i} (V + Z^{n})$$

where v is the unique root $(0 < v \cdot 1)$ of v^p ; $c^p = c^p v^2$: In particular, for p = 1 and $0 < c < \frac{1}{2}$; $M_1(n;c) = \frac{1}{12} \cdot \frac{1}{12} \cdot$

Proposition 4.2. The singular function S(z) that maximizes $ReS^{\emptyset}(0)$ if S(0) = c is

$$S(z)=c^{^{1-}}$$

We now have a variational problem, where we need to ⁻nd

$$\max \frac{1}{2 \frac{1}{4}} \int_{t^{\frac{1}{4}}}^{\frac{1}{4}} (t) \cos t dt$$

under the constraints $\frac{1}{2^{1/4}}\int_{i/4}^{1/4}e^{i'(t)}dt=1$ and $\frac{1}{2^{1/4}}\int_{i/4}^{1/4}{i'(t)}dt=\log c<0$: If this maximum equals i' and is attained when $i'(t)=i'_0(t)$; then i'_0 also solves the following dual variational problem: i'_0 and i'_0 and i'_0 are the following dual variational problem: i'_0

$$\min \frac{1}{2\%} \int_{t/4}^{\%} e^{(t)} dt$$

under the constraints $\frac{1}{2^{1/4}}\int_{i^{-1/4}}^{1/4} f(t)\cos tdt = \frac{1}{2^{1/4}}\int_{i^{-1/4}}^{1/4} f(t)dt = \log c$; because the above minimum is then equal to 1. To see this, suppose that for some $f(t) = f_1(t)$ satisfying the constraints of the dual problem $\frac{1}{2^{1/4}}\int_{i^{-1/4}}^{1/4} e^{i_1(t)}dt < 1$. Then there is some s>0 such that the function $f_2(t) = f_1(t) + s\cos t$ satis $f_2(t) = f_2(t)\cos tdt$ s >

Therefore,

$$(v) = 0 , \quad c^{j \frac{p}{2}} \frac{p^{v^{p_{j}} 1}}{\overline{v^{p}_{j} c^{p}}} = 1 + \frac{1}{v^{2}}$$

$$(1 + v^{2})^{2} (c^{p})^{2} j \quad v^{p} (1 + v^{2})^{2} c^{p} + v^{2(p+1)} = 0$$

$$(c^{p} j \quad \frac{v^{p}}{1 + v^{2}}) (c^{p} j \quad \frac{v^{2+p}}{1 + v^{2}}) = 0$$

'(1) =
$$\frac{2}{p}c^{1i}\frac{p}{2}P_{\overline{1}_{j}}C^{p}$$
:

In that case, the function

$$f(z) = (c^{\frac{p}{2}} + P_{\overline{1}, C^p}z)^{\frac{2}{p}}$$

is an element of H^p with norm 1 such that f(0) = c and $f^{\emptyset}(0) = '(1)$: When n > 1; use the function f described in Section 2. Since $f(z) = f(z^n)$; we obtain the extremal function

$$f(z) = (c^{\frac{p}{2}} + P_{\overline{1}, c^p} z^n)^{\frac{2}{p}}$$

with the same maximal *n*-th Taylor coe \pm cient as in the case n = 1:

Notice that f is a zero-free function, and therefore Theorem 3.1 also solves the extremal problem for zero-free H^p functions whose value at the origin is not too close to 0. Let us now consider zero-free functions in H^p whose value at the origin are small, as stated in Theorem 3.2.

Proof. Let $0 < c < 2^{i\frac{1}{p}}$ and let $f \ 2 \ H^p$ be a non-zero function such that f(0) = c and $kfk_p \cdot 1$ for which $jf^{\emptyset}(0)j$ is maximal. Write f(z) = S(z)F(z) where S is a singular function and F is an outer function. Writing S(0) = u and F(0) = v; notice that by Proposition 4.3, $v \in 2^{i\frac{1}{p}}$: Using the estimates given by Proposition 4.2 and Theorem 3.1, we get that

$$jf^{\emptyset}(0)j \cdot v2u\log\frac{1}{u} + u\frac{2}{p}v^{1i\frac{p}{2}}P_{\overline{1}jV^{p}}$$

$$= 2c\log\frac{v}{c} + \frac{2c}{p}\sqrt{\frac{1}{v^{p}}}j^{\overline{1}}$$

$$= '(v)$$

One can easily show that '(v) is decreasing on $[2^{i\frac{1}{p}};1]$ and therefore attains its maximum at $v=2^{i\frac{1}{p}}$. Therefore $u=c2^{i\frac{1}{p}}$; and the function

$$f(z) = (2^{\frac{1}{p}}c)^{\frac{1-z}{1+z}}2^{j\frac{1}{p}}(1+z)^{\frac{2}{p}}$$

is a zero-free function such that f(0) = c; $kfk_p = 1$ and

$$f^{\emptyset}(0) = '(2^{i^{\frac{1}{p}}}) = c(\frac{2}{p} + \log \frac{1}{2^{\frac{2}{p}}c^2})$$
:

Ø

We now consider functions in H^p that can have zeros and whose value at the origin is small, as stated in Theorem 3.3.

Proof. Consider the case n=1 and let $f \ 2 \ H^p$ be such that $k f k_p \cdot 1$ and f(0)=c: Write f(z)=B(z)F(z) where B is a Blaschke product with B(0)=v>0; and F is zero-free with F(0)=u:

Suppose \bar{c} so by the proof of Theorem 3.1

$$jf^{\emptyset}(0)j \cdot C(\frac{1}{\nu}, \nu) + \frac{2}{\rho}C^{1,\frac{p}{2}} \mathcal{P}_{\overline{V^{p}}, C^{p}}$$

$$= '(\nu)$$

and

$$(v) = 0 \quad (v) \quad (c^{p}_{i} \quad \frac{v^{p}_{i}}{1+v^{2}})(c^{p}_{i} \quad \frac{v^{2+p}_{i}}{1+v^{2}}) = 0$$

6. I. Li°yand, private communication.

Department of Mathematics and Computer Science, Seton Hall University, South Orange, New Jersey, 07079 E-mail address: beneteca@shu.edu

Department of Mathematics, The University at Albany, Albany, New York, 12222

E-mail address: bori sko@math. al bany. edu