JENSEN TYPE INEQUALITIES AND RADIAL NULL SETS Catherine Bangteau and Boris Korenblum

Abstract. We extend Jensen's formula to obtain an upper estimate of $\log jf(0)j$ for analytic functions in the unit disk **D** that are subject to a growth restriction. Suppose we have a closed subset E of the unit circle and f in addition is continuous in the union of the open disk and E. We obtain a formula that gives an upper estimate of of $\log jf(0)j$ in terms of the values of f on E and the so-called k-entropy of E. When the set E is taken to be the whole unit circle, we get the classical Jensen's inequality. Our formula is then applied to the study of radial null sets. 2000 Mathematics Subject Classi⁻cation: 30H05, 30E25, 46E15.

1 Growth Spaces

In what follows, k denotes an increasing twice di®erentiable function that maps [0;1])-JUD9(6176)/JUD9(61766)/JUD9(61766)/JUD9(61766)/JUD9(61766)/JUD9(

2 Two Problems

(A) Find good (upper and lower) estimates for the quantity

$$J(Z;k) = \sup f \log j f(0) j : f 2 UBA^{\langle k \rangle}; f j_Z = 0g$$

where $Z = fa_ng \not\ge D$ is a given sequence. (B) Find good estimates for

$$J(E; '; k) = \sup f \log j f(0) j : f 2 UBA^{\langle k \rangle} \setminus C(\mathsf{D} [E); j f j_{E} = 'g$$

where $E \not \geq \mathbb{D}$ is a closed set and ' is a non-negative continuous function on E:

Note that for $k \stackrel{<}{} 0$; $(A^{<0>} = H^{1})$ both problems have exact solutions:

$$J(Z;0) = \int_{R} \frac{X}{n} \log \frac{1}{ja_{n}j}$$
$$J(E; ';0) = \int_{E}^{Z} \log (3) dm(3)$$

where dm is the normalized Lebesgue measure on @D: (Here, we assume k

and the radial projection of S:

$$PrS = f\frac{z}{jzj}$$
: $z \ 2 \ Sg$:

Then we have

$$J(Z_{j,\mathbb{R}}) \cdot \inf_{S \not\sim Z} f^{\mathbb{R}}[^{\wedge}(PrS) + \log^{\wedge}(PrS)]_{j} T(s) + {}^{\mathbb{R}}\log^{+} T(s)g + C_{\mathbb{R}}$$

and

$$J(Z_{j}) \int \inf_{S \not\sim Z} f^{\mathscr{B}}[^{\wedge}(PrS)_{i} \log^{\wedge}(PrS)]_{i} T(s)g_{i} C_{\mathscr{B}}$$

where $C_{\emptyset} > 0$ depends only on \emptyset ; and the in ma are taken over all nite subsets S of Z:

COROLLARY 3.1 For a sequence Z such that 0 is not in Z; de $\overline{}$ ne

$$D^+(Z) = \inf fm : \inf_{S \not\sim Z} (m^{\wedge}(PrS) \mid T(s)) > i \quad 1 g:$$

Then $D^+(Z) \cdot \mathbb{B}$ is necessary and $D^+(Z) < \mathbb{B}$ is $su \pm cient$ for Z to be an $A^{i} \otimes zero$ set.

Note that for other spaces $A^{<k>}$ such that *k* has faster than logarithmic growth, a similar description of zero sets is not known.

4 Problem (B) for $A^{\langle k \rangle}$

THEOREM 4.1

$$J(E; '; k) \leftarrow \sum_{E}^{Z} \max f \log (3); \log pgdm(3); (\log p) \frac{@}{1; @} (1; jEj) + (\frac{L}{@})^{\log_2 C} Entr_k(E)$$

where $0 , <math>0 < @ \cdot \frac{1}{2}$ are arbitrary, *C* is the constant in (3), *L* is an absolute constant, and $Entr_k(E)$ is the *k*-entropy of *E*, de⁻ned as follows:

$$Entr_{k}(E) = \sum_{n=1}^{X} \sum_{i=1}^{L} k(i) dt$$

where fI_ng are the complementary arcs of E:

Special cases: (1) E = @D: Letting $p ! 0^+$; we get

$$J(@D;';k) \cdot \int_{@D} \log (3) dm(3)$$

which is the classical Jensen's inequality (in fact, equality.) (2) If $0 \cdot i(3) \cdot 1$ on E and $p = \max_{32E} i(3)$; we obtain

$$J(E; '; k) \cdot (\log p) \frac{jEj_i^{\mathbb{R}}}{1_i^{\mathbb{R}}} + (\frac{L}{\mathbb{R}})^{\log_2 C} Entr_k(E)$$

Choosing @ = jEj=2; we get

$$J(E; '; k) \cdot \frac{1}{2} (\log p) j E j + (\frac{2L}{jEj})^{\log_2 C} Entr_k(E):$$

(3) If
$$p = 1$$
 and $@ = \frac{1}{2}$; then

$$J(E; '; k) \cdot \int_{E} \log^{+} '({}^{3}) dm({}^{3}) + (2L)^{\log_{2} C} Entr_{k}(E)$$

Proof: Write

$$@\mathsf{D}_{i} E = \int_{n}^{l} I_{n}$$

where the I_n are open disjoint arcs on the unit circle. Call a_n and b_n the endpoints of I_n : Let $0 < @ \cdot \frac{1}{2}$: Let \circ_n be the open arc of the circle inside the unit disk passing through a_n and b_n and forming an angle of $\mathscr{U}^{@}_{S}$ (we will think of it as the normalized angle @) with the arc I_n : Let $i = {S \atop n} \circ_n$: $i \ I \ E$ forms the boundary of an open subset – of the unit disk containing the origin. For the proof, we construct three functions U_1 ; U_2 ; and V as follows. Step 1: Construction of U_1 and U_2 : De ne T_1

$$U_{1}(z) = \sum_{E}^{Z} Re(\frac{3+Z}{3/2}) dm(3)$$

 U_1 is the harmonic measure of E with respect to D: LEMMA 4.1

$$\lim_{r! \to -} U_1(r^3) = \hat{A}_E(3) \text{ a:e: on } @D$$

where \hat{A}_E is the characteristic function of E: In addition, $U_1(z) \cdot @$ for $z \cdot 2_i$:

Assume $Entr_k(E)$ is 'nite and de'ne the following harmonic function

$$V(Z) = \begin{bmatrix} Z \\ @D \end{bmatrix}$$

By relabeling L; we get the statement of the lemma. 2 Step 3: Construction of H and application of the maximum principle. Finally, let us de⁻ne

$$H(z) = U_2(z) \ i \ (\log p) \frac{@}{1 \ i \ @} (1 \ i \ U_1(z)) + ({}^{L}$$

lim_{r! 1}- f(r³